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ABSTRACT: The polarization modulated Fourier transform infrared B
reflection-absorption spectroscopy (FT-IRRAS) is applied to the studies of adsorption
and oxidation ofCO on a platinum electrode in 0.5M sulfuric acid and of adsorption of
cyanide on gold and silver electrodes in 0.5M potassium sulfate. The absorption intensity
of the CO on platinum electrode is ca. 4-5% while that of the CN71on silver and gold is
0.2-0.5%. The potential dependence of the vibrational spectra was observed for both
svstems. Oxidation of the linearly adsorbed CO layer proceeds by different mechanisms
depending on whether CO was adsorbed at a potential in the double layer region or in the

hydrogen region, i.e., at the edges of the CO islands in the former case and randomly in

the latter case, in which the bridged CO species plays an important role. The vibrational

frequency of the linearly adsorbed CO changes linearly with potential at a rate of 30

: em~!/volt, which is independent of anion specific adsorption. The origin of the shift is
most reasonably explained by the first order Stark effect. For Ag, Au,CN” systems, the
surface cyanide species is the linearly adsorbed CN". The anodic reaction products in the
solution from cynide ions and the electrode are also observed in the vibrational spectra.
The bands due to surface species and those due to solution species are distinguished by

measuring the spectra with s and p-polarized lightls,\

“IBM visiting scientist, 1983-1984. Permanent address: Research Institute for
Catalysis, Hokkaido University, Sapporo, 060 Japan

“*IBM Instruments Inc., 40 West Brokaw Road, San Jose California 95110
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INTRODUCTION

The feasibility of infrared reflection absorption spectroscopy (IRRAS) as an
in-situ probe of the electrode/electrolyte interphase was demonstrated initially by
Bewick and coworkers! utilizing electrochemically modulated infrared spectroscopy
(EMIRS). An EMIRS spectrum is a difference spectrum between two potentials and
being a differential method has high sensitivity in detecting the vibrational spectra of

adsorbed species at the electrode/electrolyte interphase.

Russell et al2:3, applied the polarization modulation method using a grating
spectrometer to obtain vibrational spectra of CO adsorbed on a platinum electrode at
fixed potentials. A similar attempt was made by Kunimatsu%-7 by utilizing the linear
potential sweep method at fixed wave numbers: the vibrational spectra of CO species
produced upon chemisorption of methanol molecules onto a platinum electrode (4-6)
and of CO adsorbed on a palladium electrode 7 were measured as a function of the

electrode potential. The shift of the C-O stretching frequency of adsorbed CO with

electrode potential, which was first observed by the EMIRS measurements of Beden et

al.3, was verified quantitatively by these studies.

- T s O OV,

The FTIR spectrometer was introduced for in-situ spectroscopic study of the

electrode. clectrolvte interphase by Neugebauer et al.* 11 Pons et al.12-16 3nd

117

Aurian-Blajent ¢t g I'Me measurements were done using p-polarized IR radiation

e
%2t

and taking the spectrai Jiffer e hetween two potentials.
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Here, we present some of the muain results from our recent studies of adsorption .

~)

and oxidation of CO on 2 platinum clectrode and adsorption of CN” on silver and gold j-'.j
electrodes. These results werc obtained by combining the technique of rapid D
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polarization modulation in IR_RAS‘S"() with a FTIR spectrometer for the in-situ study

of electrode/electrolyte interphases. In addition to the established advantages of FTIR
spectroscopy, this combination results in the reduction of the background IR intensity
and a complete compensation of the atmospheric IR absorption without having to
modulate the electrode potential. Recently we have used this technique and
demonstrated that a full spectra can be obtained from a submonolayer of species

adsorbed on the electrode20-22,

Adsorption and oxidation of carbon monoxide on a platinum electrode has been
the subject of many investigations over the last two decades because of its importance
in fuel cells23-27. It is generally agreed since Gilman?3 that the so-called linearly
adsorbed carbon monoxide is produced, in most cases, as the predominant surface
species when CO adsorbs onto a platinum electrode. It has also been reported by
Breiter?8-2%, Grambow and Bruckenstein30 and Cerwinski and Sobkowski3! that the
elctrochemical behaviour of the adsorbed CO layer depends on whether CO adsorbed

at a potential in the double layer region or in the hydrogen region.

Adsorption of cynide ions and its electrochemical behaviour on silver and gold
electrodes are of great interest for two reasons: first, to understand the role of cyanide
as an important ingredient in plating baths of these metals and second, because of the

recent surface enhanced Raman scattering (SERS) measurements of their vibrational

spectra32'47
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| EXPERIMENTAL i
: The rapid polarization modulated FT-IRRAS was carried out using an IBM t'
P
4
' Instruments Inc., IR/98 FTIR spectrometer with a gold wire grid polarizer and a Hinds N
International Inc., ZnSe photoeleastic modulator. The frequency of the polarization :
’ '
3 o
4 modulation was 78 kHz. The details of the technique and the arrangement in the 2
f o
'd
i sample chamber of the FTIR spectrometer are described eleswhere!9-22, The angle of z
s incidence at the window/electrolyte interface was 60°. All FT-IRRAS spectra were .
E taken with 4 cm-! resolution using either a MCT (Infrared Associates) or an InSb
E (Santa Barbara Research Center) detector cooled to Liquid N, temperature. Three
»3
S
t hundred interferograms were usually collected and coadded at each potential to :,?
.t'. improve the S/N ratio taking about 10 minutes. All experiments were carried out in :'.
ambient. The reference electrode was Ag/AgCl(3M KCI saturated by AgCl) but the D
potentials are reported here in terms of the NHE scale.
7
For studies of the CO/Pt system a spectro-electrochemical cell made from pyrex A
glass was used with a CaF, prism window. Adsorption of carbon monoxide was -
carried out by bubbling CO gas through the solution. The potential of the platinum ::'.
electrode during this process, either at 0.05V or 0.4V, determined whether CO was :.-_f
adsorbed in the hydrogen region or in the double layer region, respectively. jl','
Adsorption of cyanide on silver and gold electrodes were studied in 0.SM potassium -
sulfate solution containing either 10°2 or 10-!M KCN. The spectro-electrochemical N
cell used in this case was made from Kel-F. hY
.y
1%
!.N

RESULTS AND DISCUSSION
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1. Adsorption and oxidation of CO on a Platinum electrede in 0.5M H,50,4
1.1 Potential dependence of the adsorbed CO spectra

In Figure 1 the FT-IRRAS spectra of the adsorbed CO layers are shown between
2000 and 2150 cm-! at various electrode potentials for the two different adsorption
cases: Figure la is the case of CO adsorption in the double layer region (0.4V) and
Figure 1b is the case of adsorption in the hydrogen region (0.05V). All the spectra are
referred to 0.8V at which voltage the electrode surface is free from adsorbed CO. The
spectra are assigned to the linearly adsorbed CO species by their spectral position. The
shift of the C-é stretching frequency with potential and the sharp decrease of the band
intensity at higher potentials, due to the onset of electro-oxidation of the adsorbed CO
layer, are commonly observed although the shift takes pla :in different ways in the
two cases. In Figure 2a,b,c the integrated band intensity, CO stretching frequency and
the line width are plotted as a function of potential. In Figure 2a the integrated
absorption intensity of the carbon dioxide evolved at each potential is also plotted.
The absorption intensity of CO, is referred to OV at which no oxidation of the
adsorbed CO takes place. The ability of detecting the minute amount of CO, evolved

in on the electrode owes to the thin layer structure of the cell the cancellation of the

atmospheric CO, absorption by polarization modulation and the difference of the
intensities of the of the p and s-polarized lights in the thin layer region, the thickness o]

of which is ca. a quarter of the wave length for the CO, absorptionzz. ‘ -

For CO adsorbed at 0.4V, the intensity is constant throughout the potcntial

range until the onset of electro-oxidation of the CO layer, and the evolution of carbon
dioxide takes place simultaneously with the oxidation of the adsorbed CO layer. The

C-O stretching frequency shifts linearly with potential at a rate of 30 cm-!/volt, upon
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which the sharp coverage decrease due to the electro-oxidation has little effect, and the
line width is almost constant, ca. 8-9 em™!, but increases slightly, by ca. 2 em-!, in the

process of the oxidation.*8

For CO adsorbed at 0.05V, the intensity of the adsorbed CO is constant up to
0.40V and then decreases sharply. However the evolution of CO, starts after ca. 0.2V,
while the intensity of the linearly adsorbed CO remains constant. This implies that
there is another surface species which is oxidized first giving rise to the early evolution
of CO,. Furthermore, the C-O stretching frequency starts deviating from linearity at
ca. 0.2 V showing a plateau befors 0.40V and then decreases sharply. The line width
increases slightly, ca. 2 cm-!, between 0.2V and 0.40V and then increases sharply after

0.40V.%9

1.2 Mechanism of oxidation of the adsorbed CO layers on the electrode

We have seen that the IR spectroscopic behaviour of the linearly adsorbed CO
layers produced at 0.05V and 0.4V is quite different during their electro-oxidation
process. In summary, oxidation of the CO layer produced at 0.4V proceeds without
the C-O stretching frequency and line width being affected to an appreciable extent by
the decrease in the surface coverage of the CO layer, while these vibrational
parameters are greatly affected during the oxidation of the linearly adsorbed CO layer
produced at 0.0SV. The sharp contrast between the behaviour of the two types of CO
layers implies a different oxidation mechanism in the two cases. The former case is
very similar to the heterogeneous oxidation of the linearly adsorbed CO layer on
Pt(111) in the gas phase with oxygen, observed by Shigeishi and Kingso. They
observed no shift of the C-O stretching frequency with the decrease of the surface

coverage during the oxidation and that led them to conclude an oxidation mechanism in
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which it proceeds at the edges of the CO islands between the adsorbed CO molecules 5
and oxygen atoms. [t is reasonable to conclude that the process is the same for the

:
electro-oxidation of the CO layer produced at 0.4V. &

For the linearly adsorbed CO layer produced at 0.05V, its oxidation mechanism
would be an alternative to that of the CO layer adsorbed at 0.4V. It is in fact almost
straightforward to conclude a mechanism in which the oxidation proceeds randomly or .
uniformly in the linearly adsorbed CO layer. The reason why this case is different is K
closely related to the existence of another surface species which is oxidized first from
ca. 0.2V giving rise to the evolution of CO, before the predominant linearly adsorbed

CO layer is oxidized as shown in Figure 2a. Based on electrochemical determination of

T Tat e

the charge to oxidize this surface species, it was shown that the surface species -
contributes ca. 10% to the total oxidation charge of the adsorbed layer on the
platinum electrode.49 Therefore, after oxidation of the surface species there would be
vacant sites accessible for water molecules to adsorb and react with the linearly

adsorbed CO molecules at higher potentials. The decrease of the C-O stretching N

frequency and the increase of the line width between 0.2V and 0.4V as shown in Figure
2b and ¢ can be explained as a result of the oxidation of the minor surface species

which would give rise to the decrease of the interaction between the species and the |
linearly adsorbed CO molecules. This minor surface species has turned out in fact to :

be bridge bonded CO species which gives rise to a very weak and broad band around

1860 cm-1.49

1.3 Origin of the C-O stretching frequency shift with potential under constant -

coverage




In Figure 2b, curve 1, it was seen 1.hat the C-O stretching frequency shifts with
the electrode potential at a rate of 30 cm-!/volt under a constant surface coverage.
Ray and Anderson>! tried to explain the shift by a theoretical calculation for a
Pt,(CO)}, system in which they simulated the increase of the positive potential by
increasing the valence state ionization potential of the Pt atoms. The treatment led to
a decreased occupancy of the 2«* antibonding level of the adsorbed CO molecules in
going to more anodic potentials, resulting in vibrational frequency increase. The rate

of increase, however, was too high for the treatment to be satisfactory.

Recently, Holloway and Norskov>2 estimated the shift using empirically
determined values of the resonance position and width for the 27* orbital of the
adsorbed CO and assuming that the antibonding level shifts with the applied potential
linearly with a slop of 0.4, i.e., the adsorbed CO molecules experience approximately
40°5 of the applied potential. Their results [ed to a decreased occupancy of the
antibonding orbital by the metal electrons as the potential was made more positive and
the linearity as well as the slope of the frequency shift versus potential difference
(from arbitrarily chosen points) were in agreement with the experimental results of

Kunimatsu® and Beden et al.53

On the other hand, Lambert>? reported recently that the applied electric field
across the metal,/gas interface could give rise to a shift of the vibrational frequency of
the adosrbed CO molecules on Ni(111) in vacuum due to a first order Stark effect. He
estimated tne vibrational Stark tuning rates using cmpiric:'ll molecular parameters and
obtained reasonable values of about 9.5x10°7 cm-l/(V/cm) for CO on Ni which agree

with the observed linear frequency shift.
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Most recently ab initio calculations for a cluster model of CO chemisorbed on

“p A
a_

Cu(100) have been carried out, both without and with an applied electric field, which

indicate that up to fields of the order of 107 V/cm there is very little change in the

DM

occupancy of the 2« * orbital. The molecular parameters required to obtain the Stark
tuning rates were computed and gave essentially the same results reported by Lambert.
These parameters also did not vary appreciably with the field.56 Based on these
results we are inclined to favor Lambert's proposal that the potential dependent linear
frequency shift of the C-O stretching mode is primarily due to the first order Stark

shift.

2. Adsorption of cyanide on silver and gold electrodes

Figure 4 shows the change of the FT-IRRAS spectrum of the silver/0.5M K,S0,
interface with 10"!M KCN with potential. All the spectra are referred to the cyanide
free solution. There are essentially four bands. The band centers of three of them, i.e.,
2080, 2136 and 2167 cm”!, do not change with potential, while the band between the
2080 and 2136 bands shows shift of its band certer with potential, which is a good

indication that the band is due to surface species.

In the assignment of these bands, it is essential to know whether these bands are
due to surface or solution species. Application of the surface selection rules can often
provide clues to this question as will be described in the following experiments. Figure
5a and b are the spectra taken by using cither p or s-polarized light. They arc the
spectral ratio between two potentials. In Figure 5a, the 2167 band is the one at 0.4V
while the band at 2109 and 2080 cm™! are those at -0.6V. .Thc 2080 band is seen by
both s and p-polarized lights while 2109 and 2167 bands are scen only by p-polarized

licht. This proves that the band at 2080 em”! is a solution band while the other two
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are surface bands. From Figure Sb, it turns out that the band at 2136 cm™!isa
solution band. The sharp peaks between 2000 and 2050 cm-! are the noise due to the
water rotational bands in the air which are not readily compensated without the
polarization modulation. Based on these results, we can refer to the vibrational
frequencies of known cyano-silver complexes or the cyanide ion itself53 for the
assignment of the solution bands. Thus, the 2080 band is assigned to the cyanide ions
in the solution while the 2136 band is to the Ag(CN),” complex ion which is the
product of anodic reaction from ca. -0.4V between the cyanide ions and the silver
electrode. The band at 2167 cm™! is an interesting example of a surface band which

does not change its band position with potential. From its vibrational frequency it is

most likely a band of AgCN solid deposited on the silver electrode.

The band which shifts with potential is certainly assigned to a surface cynide
species, which has often been assigned to cvano-silver complexes with different
coordination numbers in the SERS studies.38#3.46  However, both Ag(CN)z’ and
AgCN bands dissappear if the potential is reversed to the negative side due to the
electrochemical reduction of these anodic reaction products. Therefore, it is unlikely
that any cvano-silver complexes exist on the electrode surface as an adsorbate without
being reduced at more negative potentials than ca. -0.5V. The most reasonable
assignment of the surface cyanide band is to the linearly adsorbed cyanide ions
itself.22:37  The decrease of the band intensity at negative potentials is simply due to
partial desorption of this anionic adsorbate at negative potentials. The shift of the
C-N stretching frequency with electrode potential before the anodic reaction takes

place, which was also seen by SERS#243 s very similar to that of CO on platinum,
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i.e., ca. 30 cm-1/volt. Further discussions coemparing the SERS and FT-IRRAS are

presented elsewhere.57

The situation is very similar for the Au/CN-~ system as shown in Figure 6 which
shows the change with potential of the FT-IRRAS spectrum of the system with 102N
KCN. As the concentration of the cyanide is lower, the 2080 band due to the cyanide
' ions in the solution is hardly seen. The band at 2146 cm-! which appears from ca.
-0.7V is seen by both s and p-polarized lights as demonstrated in Figure 7 and readily
! assigned to the Au(CN)," complex ions in solution, a product of anodic reaction g
i between the cyanide ions and the gold electrode. The band around 2100 cm-! which

shifts its position with potential is seen only by p-polarized light and assigned to the

‘ surface cyanide species. Because Au(CN)," is the only known complex between

cyanide ions and gold and because the Au(CN),"~ band dissappears when the potential

is reversed more negative than -0.6 V due to electrochemical reduction, it is most
likely that the surface cyanide species is not a cyano-gold complex but the linearly

adsorbed cyvanide ions, contrary to the conclusion from SERS measurements alone.*7

CONCLUSION

It is clear from the preceeding parts that the polarization modulation method
combined with a FTIR can be applied to the in-situ studies of the electrode/electrolyte

interphase successfully to give a quantitative as well as a qualitative spectroscopic

information of the species involved in the electrochemical processes. The IR

absorption intensity of the monolayer of CO on platinum electrode is ca. 4-5% while it

is 0.2-0.5% for the adsorbed CN~ on silver and gold electrodes, respectively. It should




11

be feasible to look at an adsorbed species with less IR absorption intensity than CO w

and CN~ on electrodes.
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